The ability to suppress unwanted steps

Zrinka Potočanac

Promoter
Prof. Dr. Sabine Verschueren, KU Leuven
Co-promoters
Prof. Dr. Jacques Duyzens, KU Leuven
Dr. Mirjam Pijnappels, VU Amsterdam

Motor inhibition

- Suppressing a planned movement
 - mostly investigated for hand movements
 - computer tasks based on the STOP&GO paradigm
 (Coxon, Stinear, & Byblow, 2009; Verbruggen & Logan, 2008)

Computer “StopSignal” task

In legs: step initiation

Deficit of older adults to accurately execute an effective voluntary stepping modification might be a potential cause for the increased risk of falls
(Tseng, Stanhope, & Morton, 2009)

Test during walking?

- There is a need to develop a test to measure the potential to suppress/modify ongoing walking movements
 - Resemble real life
 - subjects are tested during a walking task
 - Sensitive to different performances
 - possibility to scale the difficulty level
C mill task

Testing young adults

- Computer task 1
- C mill task
- Break
- C mill task + auditory dual task
- Computer task 2

| *counterbalanced* |

<table>
<thead>
<tr>
<th>7 males + 5 females</th>
</tr>
</thead>
<tbody>
<tr>
<td>age (years)</td>
</tr>
<tr>
<td>height (cm)</td>
</tr>
<tr>
<td>weight (kg)</td>
</tr>
</tbody>
</table>

Available Response Distance

- Single task, n = 12

“easy” to “difficult”

- Single task, n = 12

Group results

- New test of response inhibition during walking:
 - Young adults (YA) make more errors when time pressure is higher
 - YA differ in their ability to stop an ongoing stepping movement
 - The addition of a cognitive dual task increases the error rate
 - Test also feasible in elderly

The C mill test might be useful for testing the lower limbs inhibition in walking